NEIGHBOURHOODS OF UNIVALENT FUNCTIONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neighbourhoods of Univalent Functions

The main result shows that a small perturbation of a univalent function is again a univalent function, hence a univalent function has a neighbourhood consisting entirely of univalent functions. For the particular choice of a linear function in the hypothesis of the main theorem, we obtain a corollary which is equivalent to the classical Noshiro–Warschawski–Wolff univalence criterion. We also pr...

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

Coefficients of Univalent Functions

The interplay of geometry and analysis is perhaps the most fascinating aspect of complex function theory. The theory of univalent functions is concerned primarily with such relations between analytic structure and geometric behavior. A function is said to be univalent (or schlichi) if it never takes the same value twice: f(z{) # f(z2) if zx #= z2. The present survey will focus upon the class S ...

متن کامل

Nonvanishing Univalent Functions*

The class S of functions g(z) = z + c 2 z 2 + c 3 z 3 + ... analytic and univalent in the unit disk Izr < 1 has been thoroughly studied, and its properties are well known. Our purpose is to investigate another class of functions which, by contrast, seems to have been rather neglected. This is the class S o of functions f ( z ) = 1 + a 1 z + a 2 z Z + . . , analytic, univalent, and nonvanishing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2010

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972710000468